
Daminion Export API 0.9.1 
 

Daminion Export API allows you to expand your Daminion export capabilities by writing export 

add-ons. The standard export features are: Export to Folder (Export > Copy to Folder) and 

Email (Export > Send to Email).  

Supported Languages 

Daminion Add-ons can be written in any .NET compliant language, including C# or VB .NET. 

Creating a New Add-on (C#) 

First Steps 

 Launch Visual Studio and create a new Class Library.  

 Specify the .NET 2.0 or .NET 3.5 as the Target Framework.  

 Add the Daminion.API.dll from Daminion Export SDK. 
 
Your add-on must: 

1. Be inherited from the BaseExportAddon, the base class for all the export add-ons. 

2. Implement the IAddonInfo interface 

public class MyExportAddon : BaseExportAddon, IAddonInfo 

{ 

   // add-on implemenation 

} 

 

UI 

All export add-ons are launched inside the same Export window with preview options. 

 

“Copy to Folder“ add-on 

Users can select a Transformation Preset before exporting the files. By default JPEG, TIFF or 

PNG based presets are available. 



 

Transformation Presets 

If your add-on needs some add-on customization, you can add a Property Panel with the 

necessary controls to the Export Form. See “Copy to Folder” screenshot above. 

To add this panel you need to override the virtual method GetPropertyPanel of the 
BaseExportAddon class. Below is the code fragment from the “Copy to Folder” add-on. 
 

public override UserControl GetPropertyPanel(string settingsAsXml) 

{ 

  if (this.propertyPanel == null) 

  { 

    this.propertyPanel = new CopyToFolderPropertyPanel(); 

    this.Settings = this.DeserializeSettings(settingsAsXml) as 

CopyToFolderSettings; 

    if (Settings == null) 

    { 

      Settings = new CopyToFolderSettings(); 

    } 

         

    this.propertyPanel.RecentFolders = this.Settings.RecentFolders; 

    if (this.propertyPanel.RecentFolders.Length > 0) 

    { 

      this.propertyPanel.DestinationFolder = 

this.propertyPanel.RecentFolders[0]; 

    } 

    this.propertyPanel.CResolverOptions = 

this.Settings.CollisionResolverOptions; 

    this.propertyPanel.OpenExplrAfterExport = 

this.Settings.OpenExplrAfterExport; 

  } 

  return propertyPanel; 

} 
 

 
 

Save Property Panel state 

Daminion allows you to store each export add-on setting in a single Settings Repository.  To do 
this you will need to override the following two methods: 
 

 public override object DeserializeSettings(string settingsAsXml) 

 public override string SerializeSettings() 

 

Deployment 



All the Daminion add-ons are stored in the [Program Files]\Daminion 

Software\Daminion\Addons folder. 

Build your add-on project and copy the compiled .dll file to the Addons folder. Do not include 

theDaminion.API.dll!  

After doing this please restart Daminion. If you've done everything correctly your add-on will 

appear in the Export Menu List. 

 

If you think your export add-on might be useful to other users, you're welcome to send the 

compiled project to us at addons@daminion.net 

It will be published on our Daminion Add-ons page and available for public download after our 

review. 

IAddonInfo Interface 

Information about Daminion add-ons  

Namespace: Daminion.API 

Assembly: Daminion.API.dll 

Properties 

string  Name  Add-on Name 

Guid Guid Add-on Guid 

string WhatsNew What’s new in this add-on version 

string Description Add-on Description 

string Copyright Add-on Developer Copyrights 

string Version Add-on Version  

string Authors Add-on Developer(s) 

string MinimalVersion Minimal Daminion version needs to launch this add-on 

string UpdateUrl Url to check the latest add-on versions 

string HomePage Add-on HomePage 

 

BaseExportAddon 

Base class for all Daminion export add-ons. 

Namespace: Daminion.API 

Assembly: Daminion.API.dll 

Abstract Properties & Methods 

string DoExportFile Do export the specified file 

Parameters: 

 fileRef - Reference to a file on 

the local disk 

 sourceFileName - File name of the 

source file 

mailto:addons@daminion.net


 cancelExport - Return False to 

cancel the export process 

 skipThisFile - Return True to 

cancel the export process 

 catalogTags - A list of catalog 

tags associated with the 

exporting file 

Virtual Properties & Methods 

string CustomExportButtonText A replacement for the default Export 

Button caption of the Export Preview 

Form. 

Example of usages: "Send to Email", 

"Upload to Flickr". 

UserControl GetPropertyPanel This panel will appear inside the 

Properties GroupBox of the Export 

Preview Form (you will not seen this 

GroupBox if you don't override this 

method). 

 

Override this method if your addon 

allows customization. 

 

Returns:  

Reference to a panel (inherited from 

UserControl) with controls to customize 

addon properties. 

DefaultTransf

ormationPrese

ts 

PreferredTransformation

Preset 

This transformation preset will be 

selected when a user first starts the 

addon. 

void DoLaunchJobInMainThread Launch a job in the main thread. Useful 

to launch some Forms in the main thread. 

void DeserializeSettings Deserialize Addon settings from the xml 

string. 

Parameters: 

 settingsAsXml - Addon settings is 

stored as xml in the Single 

Settings Repository. 

Returns:  

Instance of a User class deserialized 

from the specified settingsAsXml. 

object SerializeSettings Serialize add-on settings to the xml 

string 

Returns:  

XML string of the serialized Add-on 

Settings instance. 

bool CheckInputBeforeExport Invoked right after a user clicks on the 

Export button 

Returns:  

 Return False if input was invalid. 

In this case the Export Form will 

not be closed after pressing the 

Export button. 

 Return True to continue the export 

process. 

void FinishExport Override this method if you need to 

perform any actions after the export 

process has finished. 



 


